1d plume model based on equations in Joe Kordzi's Basic program. The solution is not coupled, but instead individual components are added together. Individual parts include regional groundwater velocity, operational plume, buoyancy, dispersion, and diffusion.

Facility: Corsicana Technologies Case: 2 - k=191 md 300years

1. Define Units

cp := .01 · poise
$$g = 9.807 \,\text{m·s}^{-2} \qquad \text{md} := 7.32441 \cdot 10^{-8} \cdot \frac{\text{ft}^3 \cdot \text{cp}}{\text{sec}} \qquad \text{gal} := 0.1336894 \, \text{ft}^3 \qquad \text{acre} := 43560 \cdot \text{ft}^2$$

2. Reservoir and 10,000 Year Plume Demonstration Parameters

3. Operational Plume Radius and Area

operational_plume_radius:=
$$\sqrt{\frac{\text{cumvolume}}{\pi \cdot \phi \cdot \text{h}}}$$

calculated operational plume radius

Area_of_plume:= π · operational_plume_radius²

calculated operational plume area

Area_of_plume= 324.916acre

4. Movement due to Regional Ground Water Velocity

$$\Delta t = 300 \text{yr}$$

$$Vdrift := 0 \cdot \frac{ft}{yt}$$

Ground_water_movement_distance= Vdrift · Δt

Ground_water_movement_distance= 0ft

calculated movement from regional velocity

5. Movement due to density drift from bouyancy

Den1 :=
$$4 \cdot \pi \cdot \sqrt{\alpha T \cdot \alpha L} \cdot k \cdot \left| \rho gi - \rho go \right| \cdot g \cdot \sin(\theta) \cdot \Delta t$$

Den1 =
$$1.032 \text{ kg} \cdot \text{s}^{-1} \text{ fi}$$

Den2:=
$$\phi^2 \cdot \mu \cdot Area_of_plume$$

Den3 :=
$$4 \cdot \pi \cdot \frac{\sqrt{\alpha T \cdot \alpha L}}{\text{Area_of_plume} \cdot \phi}$$

Den3 =
$$2.17 \times 10^{-4} \text{ ft}^{-1}$$

$$\label{eq:Density_drift_distance} \begin{aligned} \text{Density_drift_distance} := & \frac{\left[\left[1 + \left(\frac{\text{Den1}}{\text{Den2}} \right) \right]^{0.5} \right] - 1}{\text{Den3}} \end{aligned}$$

Density_drift_distance = 26.8ft

calculated plume movement from bouyant drift

6. Movement due to dispersion and diffusion

$$\tau := 1$$

tortuosity

$$D0 = 4.8 \times 10^{-9} \text{ m}^2 \cdot \text{s}^{-1}$$
 free water diffusivity

 $CRF = 1 \times 10^{-3}$ concentration reduction factor

L:= Density_drift_distance + operational_plume_radiu:

L = 2149.31ft

operational plume radius and buoyant plume length

 $standard_deviation \! := \! \left[2 \cdot \left[(\alpha L \cdot L) + (D0 \cdot \tau \cdot \Delta t) \right] \right]^{0.5}$

standard_deviation= 829.9fl

Iterative Calculations for error function

$$X_i := 0.01 + (i \cdot 0.001)$$

$$X_0 = 0.01$$

Error_CRF:= 2 · (CRF)

Error_CRF = 0.002

 $Error_function_i := erfc(X_i)$

 $Error_function_0 = 0.98871658444415$

Difference := Error_function - Error_CRF

 $Difference_0 = 0.987$

$$\label{eq:converge} \begin{aligned} \text{Converge(X, tol)} &:= & \text{$j \leftarrow 0$} \\ & \text{while Difference}_{j} > \text{tol} \\ & \text{$j \leftarrow j+1$} \end{aligned}$$

Programming loop to determine

argument - solve inverse complementary error function

Define arrays for loop

Converge(X, 0.000000000000)1 = 2.186

Z := Converge(X, 0.0000000000000)

Z = 2.186

The argument of the inverse complementary error function

 $\Delta r := \sqrt{2} \cdot Z \cdot \text{standard_deviatior}$

from the following equation: CRF:= $\operatorname{erfc}\left(\frac{\Delta r}{\operatorname{standard_deviation} \cdot \sqrt{2}}\right)$

 $\Delta r = 2565.7ft$

diffusive and dispersive plume component

7. Summary of Results

operational_plume_radius= 2122.5ft

calculated operational plume radius

Ground water movement distance= 0fl

calculated movement from regional velocity

Density_drift_distance = 26.8ft

calculated plume movement from bouyant drift

 $\Delta r = 2565.7f1$

diffusive and dispersive plume movement

total_plume_distance:= operational_plume_radius+ Ground_water_movement_distance+ Density_drift_distance

total_plume_distance = 4715ft

total plume movement from all effects

Caddal distance from well the . DOL dispersion Sador is expected to be often 300years